Diagonalization

As mentioned earlier, an $n \times n$ matrix D is a diagonal matrix if all the entries off the diagonal are 0 .
That is,

$$
D=\left[\begin{array}{cccc}
\lambda_{1} & 0 & 0 & \cdots \\
0 & \lambda_{2} & 0 & 0 \\
\vdots & \ddots & 0 \\
0 & \cdots & \ddots & \lambda_{n}
\end{array}\right]=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)
$$

Ex:

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 5
\end{array}\right]=\operatorname{diag}(1,2,5)} \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]=\operatorname{diag}(0,2)}
\end{aligned}
$$

Calculations $w /$ diagonal matrices are easy:
If $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), E=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, then
(1.) $D+E=\operatorname{diag}\left(\lambda_{1}+\alpha_{1}, \ldots, \lambda_{n}+\alpha_{n}\right)$
(2.) $D E=\operatorname{diag}\left(\lambda_{1} \alpha_{1}, \ldots, \lambda_{n} \alpha_{n}\right)$
(3.) $\operatorname{det} D=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.

Def: $A_{n} n \times n$ matrix A is diagonalizable if $P^{-1} A P$ is diagonal for some $n \times n$ invertible matrix $P . P$ is called a diagonalizing matrix for A.

We can describe when A is diagonalizable using eigenvectors:

Theorem: Let A be an $n \times n$ matrix.
1.) A is diagonalizable if and only if it has eigenvectors $\vec{x}_{1}, \ldots, \vec{x}_{n}$ such that the matrix

2.) In this case, $P^{-1} A P=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, where for each i, λ_{i} is the eigenvalue corresponding to \vec{x}_{i}.

Ex: (3.3.1c)

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
7 & 0 & -4 \\
0 & 5 & 0 \\
5 & 0 & -2
\end{array}\right] \\
C_{A}(x)=\operatorname{det}(x I-A) & =\operatorname{det}\left[\begin{array}{ccc}
x-7 & 0 & 4 \\
0 & x-5 & 0 \\
-5 & 0 & x+2
\end{array}\right] \\
& =(x-5)((x-7)(x+2)+20) \begin{array}{c}
\text { (expand along } \\
\text { row 2) }
\end{array} \\
& =(x-5)\left(x^{2}-5 x-14+20\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(x-5)\left(x^{2}-5 x+6\right) \\
& =(x-5)(x-3)(x-2)
\end{aligned}
$$

Eigenvalues: $\lambda_{1}=5, \lambda_{2}=3, \lambda_{3}=2$

$$
\lambda_{1}=5:\left[\begin{array}{ccc|c}
-2 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 \\
-5 & 0 & 7 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Eigenvectors: $t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \quad t \neq 0$

$$
\lambda_{2}=3:\left[\begin{array}{ccc|c}
-4 & 0 & 4 & 0 \\
0 & -2 & 0 & 0 \\
-5 & 0 & 5 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Eigenvectors: $t\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \quad t \neq 0$
$\lambda_{3}=2:\left[\begin{array}{ccc|c}-5 & 0 & 4 & 0 \\ 0 & -3 & 0 & 0 \\ -5 & 0 & 4 & 0\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}1 & 0 & -4 / 5 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
Eigenvectors: $t\left[\begin{array}{c}4 / 5 \\ 0 \\ 1\end{array}\right], t \neq 0$ or, equivalently: $t\left[\begin{array}{l}4 \\ 0 \\ 5\end{array}\right], \quad t \neq 0$.

Take $P=\left[\begin{array}{lll}0 & 1 & 4 \\ 1 & 0 & 0 \\ 0 & 1 & 5\end{array}\right]$. $\quad \operatorname{det} P=-1(5-4)=-1$
so P is invertible.

$$
\begin{aligned}
& {\left[\begin{array}{lll|lll}
0 & 1 & 4 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 5 & 0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 4 & 1 & 0 & 0 \\
0 & 1 & 5 & 0 & 0 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 4 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 5 & 0 & -4 \\
0 & 0 & 1 & -1 & 0 & 1
\end{array}\right] \\
& P^{-1} A P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
5 & 0 & -4 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
7 & 0 & -4 \\
0 & 5 & 0 \\
5 & 0 & -2
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 4 \\
1 & 0 & 0 \\
0 & 1 & 5
\end{array}\right] \\
&=\left[\begin{array}{ccc}
0 & 5 & 0 \\
15 & 0 & -12 \\
-2 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 4 \\
1 & 0 & 0 \\
0 & 1 & 5
\end{array}\right]=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 2
\end{array}\right]=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)
\end{aligned}
$$

In each of the examples we've seen so far, each eigenvalue has had only one basic eigenvector. Here's an example Where that's not the case:

$$
\begin{aligned}
\text { Ex: } & =\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \\
C_{A}(x) & =\operatorname{det}(x I-A)=\operatorname{det}\left[\begin{array}{ccc}
x & -1 & -1 \\
-1 & x & -1 \\
-1 & -1 & x
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =x\left(x^{2}-1\right)+1(-x-1)-1(1+x) \\
& =x(x+1)(x-1)-(x+1)-(x+1) \\
& =(x+1)(x(x-1)-1-1) \\
& =(x+1)\left(x^{2}-x-2\right) \\
& =(x+1)(x-2)(x+1) \\
& =(x+1)^{2}(x-2)
\end{aligned}
$$

so $\lambda_{1}=-1, \lambda_{2}=2$ are the two eigenvalues.

$$
\underset{\sim}{\lambda_{1}=-1}:\left[\begin{array}{lll|l}
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Solution:

$$
\begin{aligned}
& x=-s-t \\
& y=s \\
& z=t
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2}=2: & {\left[\begin{array}{ccc|c}
2 & -1 & -1 & 0 \\
-1 & 2 & -1 & 0 \\
-1 & -1 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & -1 / 2 & -1 / 2 & 0 \\
0 & 3 / 2 & -3 / 2 & 0 \\
0 & -3 / 2 & 3 / 2 & 0
\end{array}\right] } \\
& \longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Solutions: $t\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

So $P=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$, and $P^{-1} A P=\operatorname{diag}(-1,-1,2)$.

Def: An eigenvalue of A has multiplicity m if it occurs m times as a root of $C_{A}(x)$.

In the above example, $\lambda_{1}=-1$ has multiplicity 2 , and $\lambda_{2}=2$ has multiplicity 1. λ_{1} had 2 basic eigenvectors, and λ_{2} had 1 .

Theorem: A is diagonalizable if and only if every eigenvalue λ of multiplicity m has exactly m basic eigenvectors; i.e. The solution of $(\lambda I-A) \vec{x}=\overrightarrow{0}$ has exactly m parameters.

Theorem: An $n \times n$ matrix w / n distinct eigenvalues is diagonalizable.

How to diagonalize a matrix:
A an $n \times n$ matrix.
(1.) Find eigenvalues of A (roots of $\left.C_{A}(x)=\operatorname{det}(x I-A)\right)$
(2.) Find basic eigenvectors for each eigenvalue (basic solutions of $(\lambda I-A) \vec{x}=\overrightarrow{0})$.
（3．）A is diagonalizable if and only if there are a total of n basic eigenvalues．
（4．）If A is diagonalizable，then $P^{-1} A P$ is diagonal． （ $P=$ matrix $w /$（multiples of） basic eigenvectors as columns， and $P^{-1} A P$ has diagonal corr．eigenvalues．）

Ex：$\quad A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] . \quad C_{A}(x)=\operatorname{det}\left[\begin{array}{cc}x-1 & -1 \\ 0 & x-1\end{array}\right]=(x-1)^{2}$
eigenvalue：$\lambda=1$ ，cult $=2$ ．

$$
\left[\begin{array}{cc|c}
1-1 & -1 & 0 \\
0 & 1-1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

solution：$t\left[\begin{array}{l}1 \\ 0\end{array}\right]$ ．only l basic eigenvector．
So A is not diagonalizable．

Ex：$\quad A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], \quad C_{A}(x)=\operatorname{det}\left[\begin{array}{cc}x & -1 \\ 1 & x\end{array}\right]=x^{2}+1$ ．

No real roots，so no real eigenvalues，so A is not diagonalizable．（except with complex 诗s）

Bird pop．example：
We can how finish the example from the beginning of the section：

$$
\begin{aligned}
& \vec{V}_{k}=\left[\begin{array}{l}
a_{k} \\
j_{k}
\end{array}\right], \quad \vec{V}_{0}=\left[\begin{array}{lll}
1 & 0 & 0 \\
4 & 0
\end{array}\right], \quad \text { and } \\
& \vec{V}_{k+1}=A \vec{V}_{k}, \quad \text { where } A=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{4} \\
2 & 0
\end{array}\right]
\end{aligned}
$$

We want to compute $\vec{v}_{k}=A^{k} \vec{V}_{0}$.

First, we diagonalize A :

$$
\begin{aligned}
C_{A}(x)=\operatorname{det}(x I-A)=\operatorname{det}\left[\begin{array}{cc}
x-1 / 2 & -1 / 4 \\
-2 & x
\end{array}\right] & =x(x-1 / 2)-1 / 2 \\
& =x^{2}-\frac{1}{2} x-1 / 2 \\
& =(x-1)(x+1 / 2)
\end{aligned}
$$

\Rightarrow eigenvalues: $\lambda_{1}=1, \lambda_{2}=-1 / 2$ (2 distinct eigenvalues \Rightarrow diagonalizable]

$$
\lambda_{h}=1:\left[\begin{array}{cc|c}
1 / 2 & -1 / 4 & 0 \\
-2 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

eigenvectors: $t\left[\begin{array}{c}1 / 2 \\ 1\end{array}\right]$, or $t\left[\begin{array}{l}1 \\ 2\end{array}\right]$ for convenience.

$$
\lambda_{1}=-1 / 2:\left[\begin{array}{ll|l}
-1 & -1 / 4 & 0 \\
-2 & -1 / 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 1 / 4 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

eigenvectors: $t\left[\begin{array}{c}-1 / 4 \\ 1\end{array}\right]$, or $t\left[\begin{array}{c}-1 \\ 4\end{array}\right]$.

$$
P=\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right] \text {, so } \quad P^{-1}=\frac{1}{6}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]
$$

So $\quad P^{-1} A P=\left[\begin{array}{cc}1 & 0 \\ 0 & -1 / 2\end{array}\right]=D$

$$
\Rightarrow \quad A=P D P^{-1}
$$

So we can finally do our computation:

$$
\begin{aligned}
\vec{V}_{k}=A^{k} \vec{V}_{0} & =\left(P D P^{-1}\right)^{k} \vec{v}_{0} \\
& =\left(P D^{k} P^{-1}\right) \vec{V}_{0} \\
& =\left(\left[\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & (-1 / 2)^{k}
\end{array}\right] \frac{1}{6}\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\right) \vec{V}_{0} \\
& =\frac{1}{6}\left(\left[\begin{array}{cc}
1 & -(-1 / 2)^{k} \\
2 & 4(-1 / 2)^{k}
\end{array}\right]\left[\begin{array}{cc}
4 & 1 \\
-2 & 1
\end{array}\right]\right) \vec{v}_{0} \\
& =\frac{1}{6}\left[\begin{array}{cc}
4+2(-1 / 2)^{k} & 1-(-1 / 2)^{k} \\
8-8(-1 / 2)^{k} & 2+4(-1 / 2)^{k}
\end{array}\right]\left[\begin{array}{cc}
10 & 0 \\
40
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{cc}
400+200(-1 / 2)^{k}+40 & -40(-1 / 2)^{k} \\
800-800(-1 / 2)^{k}+80+160(-1 / 2)^{k}
\end{array}\right] \\
& =\frac{1}{6}\left[\begin{array}{l}
440+160(-1 / 2)^{k} \\
880-640(-1 / 2)^{k}
\end{array}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
& a_{k}=\frac{220}{3}+\frac{80}{3}(-1 / 2)^{k} \text { and } \\
& d_{k}=\frac{440}{3}-\frac{320}{3}(-1 / 2)^{k}
\end{aligned}
$$

So, for example, after 5 years,

$$
a_{5} \approx 72.5 \text { and } j_{5}=150
$$

In the long run, as k gets large, $(-1 / 2)^{k} \rightarrow 0$, so The adult pop. stabilizes at $\frac{220}{3} \approx 73.3$ and the juvenile pop. at $\frac{440}{3} \approx 146.7$.

Practice Problems: 3.3: 1 a dfgi, 6, $8 a, 9,13$

